Monday, November 26, 2012



Two Interesting Proteins Discovered


SLEEP

Modulation of Vigilance in the Primary Hypersomnias by Endogenous Enhancement of GABAA Receptors


    ABSTRACT

    The biology underlying excessive daytime sleepiness (hypersomnolence) is incompletely understood. After excluding known causes of sleepiness in 32 hypersomnolent patients, we showed that, in the presence of 10 μM γ-aminobutyric acid (GABA), cerebrospinal fluid (CSF) from these subjects stimulated GABAA receptor function in vitro by 84.0 ± 40.7% (SD) relative to the 35.8 ± 7.5% (SD) stimulation obtained with CSF from control subjects (Student’s t test, t = 6.47, P < 0.0001); CSF alone had no effect on GABAA signaling. The bioactive CSF component had a mass of 500 to 3000 daltons and was neutralized by trypsin. Enhancement was greater for α2 subunit– versus α1 subunit–containing GABAA receptors and negligible for α4 subunit–containing ones. CSF samples from hypersomnolent patients also modestly enhanced benzodiazepine (BZD)–insensitive GABAA receptors and did not competitively displace BZDs from human brain tissue. Flumazenil—a drug that is generally believed to antagonize the sedative-hypnotic actions of BZDs only at the classical BZD-binding domain in GABAA receptors and to lack intrinsic activity—nevertheless reversed enhancement of GABAA signaling by hypersomnolent CSF in vitro. Furthermore, flumazenil normalized vigilance in seven hypersomnolent patients. We conclude that a naturally occurring substance in CSF augments inhibitory GABA signaling, thus revealing a new pathophysiology associated with excessive daytime sleepiness.


    EAT

    GPRC5B Activates Obesity-Associated Inflammatory Signaling in Adipocytes

    Abstract: A genome-wide association study identified a strong correlation between body mass index and the presence of a 21-kb copy number variation upstream of the human GPRC5B gene; however, the functional role of GPRC5B in obesity remains unknown. We report that GPRC5B-deficient mice were protected from diet-induced obesity and insulin resistance because of reduced inflammation in their white adipose tissue. GPRC5B is a lipid raft–associated transmembrane protein that contains multiple phosphorylated residues in its carboxyl terminus. Phosphorylation of GPRC5B by the tyrosine kinase Fyn and the subsequent direct interaction with Fyn through the Fyn Src homology 2 (SH2) domain were critical for the initiation and progression of inflammatory signaling in adipose tissue. We demonstrated that a GPRC5B mutant lacking the direct binding site for Fyn failed to activate a positive feedback loop of nuclear factor {kappa}B–inhibitor of {kappa}B kinase {varepsilon} signaling. These findings suggest that GPRC5B may be a major node in adipose signaling systems linking diet-induced obesity to type 2 diabetes and may open new avenues for therapeutic approaches to diabetic progression.

    No comments:

    Post a Comment